Numerical Solution of the Falkner-Skan Equation Using Third-Order and High-Order-Compact Finite Difference Schemes
نویسندگان
چکیده
We present a computational study of the solution of the Falkner-Skan equation (a thirdorder boundary value problem arising in boundary-layer theory) using high-order and high-order-compact finite differences schemes. There are a number of previously reported solution approaches that adopt a reduced-order system of equations, and numerical methods such as: shooting, Taylor series, Runge-Kutta and other semi-analytic methods. Interestingly, though, methods that solve the original non-reduced third-order equation directly are absent from the literature. Two high-order schemes are presented using both explicit (third-order) and implicit compactdifference (fourth-order) formulations on a semi-infinite domain; to our knowledge this is the first time that high-order finite difference schemes are presented to find numerical solutions to the non-reduced-order FalknerSkan equation directly. This approach maintains the simplicity of Taylor-series coefficient matching methods, avoiding complicated numerical algorithms, and in turn presents valuable information about the numerical behaviour of the equation. The accuracy and effectiveness of this approach is established by comparison with published data for accelerating, constant and decelerating flows; excellent agreement is observed. In general, the numerical behaviour of formulations that seek an optimum physical domain size (for a given computational grid) is discussed. Based on new insight into such methods, an alternative optimisation procedure is proposed that should increase the range of initial seed points for which convergence can be achieved.
منابع مشابه
High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations
In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...
متن کاملA numerical solution of Falkner-Skan equation via a shifted Chebyshev collocation method
The Falkner-Skan equation is a nonlinear third-order boundary value problem defined on the semi-infinite interval [0,∞). This equation plays an important role to illustrate the main physical features of boundary layer phenomena. This paper presents a new collocation method for solving the Falkner-Skan equation. The proposed approach is equipped by the orthogonal Chebyshev polynomials that have ...
متن کاملA numerical solution of a singular boundary value problem arising in boundary layer theory
In this paper, a second-order nonlinear singular boundary value problem is presented, which is equivalent to the well-known Falkner-Skan equation. And the one-dimensional third-order boundary value problem on interval [Formula: see text] is equivalently transformed into a second-order boundary value problem on finite interval [Formula: see text]. The finite difference method is utilized to solv...
متن کاملFourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry
The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...
متن کاملNonstandard explicit third-order Runge-Kutta method with positivity property
When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...
متن کامل